
Lecture 21

The Multigroup Energy Discretization

1 Introduction

The purpose of this lecture is to describe the multigroup method, which is essentially

the only energy discretization technique this is applied to the transport equation. The

multigroup method can be presented Petrov-Galerkin method. It is often derived from the

transport equation without resorting to basis functions, but this derivation depends upon

the assumption of separability of the solution in space and angle. Since such an assumption

is rarely met in practice. This is why we have chosen to present the multigroup method as a

Pertrov-Galerkin method. There are several rather odd aspects of the standard multigroup

method. These oddities can be eliminated while leaving the discrete solution invariant, but

we have nonetheless chosen to present the standard method.

2 Derivation of the Multigroup Method

We begin the derivation of the multigroup method by considering the monoenergetic trans-

port equation with an anisotropic scattering and distributed sources expanded in Legendre
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Figure 1: The group structure. Each group represents an interval of energy.

polynomials:

µ
∂ψ

∂x
+ σtψ =

L∑
k=0

2k + 1

4π

[∫ ∞

0

σk(E
′ → E)φk(E

′) dE ′ + qk

]
Pk(µ) , (1)

where

σk(E
′ → E) = 2π

∫ +1

−1

σs(E
′ → E, µ0)Pk(µ0) dµ0 , (2a)

φk = 2π

∫ +1

−1

ψ(E)Pk(µ) dµ , (2b)

qk(E) = 2π

∫ +1

−1

q(E)Pk(µ) dµ . (2c)

Next we divide the energy domain, [Emin, Emax], into G continuous intervals or groups,

as shown in Fig. 1. One of the oddities of the multigroup method is to index the group

energies in descending rather than ascending order. This is done for a reason that is later

explained. Thus the edge bounding for group g are Eg+ 1
2
and Eg− 1

2
, and the average energy

is Eg. The angular flux trial space representation is given by

ψ̃ =

g∑
k=1

ψkBk(E) , (3)

where the basis function, Bg, is defined for all g to be zero for all energies not in group

g and of any desired dependence for energies within group g, subject to the following
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normalization: ∫ E
g− 1

2

E
g+1

2

Bg(E) dE = 1 . (4)

Integrating ψ̃ over group g, we find that ψg represents the integral of the angular flux over

group g:

ψg =

∫ E
g− 1

2

E
g+1

2

ψ(E) dE . (5)

Lacking any knowledge of the behavior of the solution within a group, one generally defines

the group basis function to have a constant dependence. The weight functions are defined

for all g as follows:

Wg(E) = 0 for all energies not in group g,

= 1 for all energies in group g, (6)

The multigroup equations are obtained by substituting the trial space representation for ψ

into Eq. (1), succesively multiplying by each weight function, and integrating the equation

over all energies. The resulting equation for ψg is

µ
∂ψg

∂x
+ σt,gψg =

L∑
k=0

2k + 1

4π

[
G∑

n=1

σk,n→gφk,n + qk,g

]
Pk(µ) , (7)

where

σt,g =

∫ E
g− 1

2

E
g+1

2

σt(E)Bg(E) dE , (8a)

σk,n→g =

∫ E
g− 1

2

E
g+1

2

∫ E
n− 1

2

E
n+1

2

σk(E
′ → E)Bn(E

′) dE ′ dE , (8b)
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qg =

∫ E
g− 1

2

E
g+1

2

q(E)Bg(E) dE . (8c)

Note from the preceeding definitions that σt,g is obtained from σt via a basis-function-

weighted average over group g, that σk,n→g is obtained from σk(E
′ → E) via a basis-

function-weighted average in E ′ over group n together with integration in E over group g,

and that qk,g is obtained from qk via a basis-function-weighted average over group g.

It would perhaps be asthetically more pleasing if ψg denoted the average of ψ over

group g rather than the integral of ψ over group g. This can be achieved while leaving the

solution invariant simply by changing the normalization of the basis functions as follows:

∫ E
g− 1

2

E
g+1

2

Bg(E) dE = ∆Eg , g = 1, G. (9)

where ∆Eg = Eg− 1
2
− Eg+ 1

2
. Furthermore, all multigroup cross-section quantities can be

made to represent averages in all variables by changing the definition of the weight functions

as follows:

Wg(E) =
1

∆Eg

g = 1, G. (10)

With these changes, the equation for ψg becomes

µ
∂ψg

∂x
+ σt,gψg =

L∑
k=0

2k + 1

4π

[
G∑

n=1

σk,n→gφk,n∆En + qk,g

]
Pk(µ) , (11)

where

σt,g =
1

∆Eg

∫ E
g− 1

2

E
g+1

2

σt(E)Bg(E) dE , (12a)
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σk,n→g =
1

∆Eg

1

∆En

∫ E
g− 1

2

E
g+1

2

∫ E
n− 1

2

E
n+1

2

σk(E
′ → E)Bn(E

′) dE ′ dE , (12b)

qg =
1

∆Eg

∫ E
g− 1

2

E
g+1

2

q(E)Bg(E) dE . (12c)

We henceforth assume the standard multigroup definitions.

3 Solution of the Multigroup Sn Equations

Am obvious way to solve the multigroup Sn equations is simply to use source iteration:

µ
∂ψ�+1

g

∂x
+ σt,gψ

�+1
g =

L∑
k=0

2k + 1

4π

[
G∑

n=1

σk,n→gφ
�
k,n + qk,g

]
Pk(µ) . (13)

However, this is not necessarily the most effective way to do it. Instead, we use a nested

iteration approach. To define this nested scheme, we first decompose the total scattering

source as follows:

µ
∂ψg

∂x
+ σt,gψg =

L∑
k=0

2k + 1

4π

[
g−1∑
n=1

σk,n→gφk,n + σk,g→gφk,g +
G∑

n=g+1

σk,n→gφk,n + qk,g

]
Pk(µ) . (14)

The first source on the right side of Eq. (14) is the downscatter source for group g, i.e., the

source due to particles in higher-energy groups that scatter into group g due to interactions

that result in energy loss for the scattered particle. The second term in Eq. (14) is the

within-group scattering source for group g, i.e., the source due to particles in group g that

scatter, but do not change group. Such particles may either either scatter without energy
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loss or suffer such a small energy loss that they stay within the group g. The third term in

Eq. (14) is the upscatter source for group g, i.e., the source due to particles in lower-energy

groups that scatter into group g due to interactions that result in an energy gain for the

scattered particle. Many problems do not involve upscatter. We define our nested iteration

procedure so that a minimum number of sweeps are required to solve such problems. In

particular, the iteration process can be represented as follows:

µ
∂ψ�+1,j+1

g

∂x
+ σt,gψ

�+1,j+1
g

=

L∑
k=0

2k + 1

4π

[
g−1∑
n=1

σk,n→gφ
�,j+1
k,n + σk,g→gφ

�,j
k,g +

G∑
n=g+1

σk,n→gφ
�,j
k,n + qk,g

]
Pk(µ) , (15)

where � is the inner iteration index and j is the outer iteration index. This nested iteration

process can be described in words as follows:

1. Begin an outer iteration by entering a loop over all groups.

2. For each group, g, calculate downscatter source using latest fluxes, and calculate the

within-group source and the upscatter source using fluxes from the previous outer

iteration.

3. Execute the inner iterations by performing sweeps with fixed downscatter and upscat-

ter sources until the within-group scattering source is converged. The outer iteration

index for the group g fluxes is incremented upon convergence of the inner iterations.
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4. The outer iteration is completed when the inner iterations are completed for the last

group. If there is no upscatter, the converged solution for all groups is obtained after

one outer iteration. If there is upscatter, the outer iterations are continued until the

upscatter sources are converged for all groups.

To see why only one outer iteration is required when there is no upscatter. Consider that

there is no downscatter source for the first group because it is the highest energy group.

Thus once the inner iterations are completed for the first group, one has the final solution

for that group. The first group then provides the converged downscatter source for the

second group. Once the inner iterations are completed for the second group, one has the

final solution for that group. The first and second groups then provide the converged

downscatter source for the third group, and so on. The reason for indexing the groups in

order of decreasing energy is now clear. Assuming that the group fluxes are solved in order

of increasing group index, lower group indices must correspond to higher group energies in

order to avoid multiple outer iterations when upscatter is not present.
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